3.4.51 \(\int \frac {x^6}{(1-a^2 x^2)^4 \text {arctanh}(a x)} \, dx\) [351]

3.4.51.1 Optimal result
3.4.51.2 Mathematica [A] (verified)
3.4.51.3 Rubi [A] (verified)
3.4.51.4 Maple [A] (verified)
3.4.51.5 Fricas [B] (verification not implemented)
3.4.51.6 Sympy [F]
3.4.51.7 Maxima [F]
3.4.51.8 Giac [F]
3.4.51.9 Mupad [F(-1)]

3.4.51.1 Optimal result

Integrand size = 22, antiderivative size = 55 \[ \int \frac {x^6}{\left (1-a^2 x^2\right )^4 \text {arctanh}(a x)} \, dx=\frac {15 \text {Chi}(2 \text {arctanh}(a x))}{32 a^7}-\frac {3 \text {Chi}(4 \text {arctanh}(a x))}{16 a^7}+\frac {\text {Chi}(6 \text {arctanh}(a x))}{32 a^7}-\frac {5 \log (\text {arctanh}(a x))}{16 a^7} \]

output
15/32*Chi(2*arctanh(a*x))/a^7-3/16*Chi(4*arctanh(a*x))/a^7+1/32*Chi(6*arct 
anh(a*x))/a^7-5/16*ln(arctanh(a*x))/a^7
 
3.4.51.2 Mathematica [A] (verified)

Time = 0.13 (sec) , antiderivative size = 40, normalized size of antiderivative = 0.73 \[ \int \frac {x^6}{\left (1-a^2 x^2\right )^4 \text {arctanh}(a x)} \, dx=\frac {15 \text {Chi}(2 \text {arctanh}(a x))-6 \text {Chi}(4 \text {arctanh}(a x))+\text {Chi}(6 \text {arctanh}(a x))-10 \log (\text {arctanh}(a x))}{32 a^7} \]

input
Integrate[x^6/((1 - a^2*x^2)^4*ArcTanh[a*x]),x]
 
output
(15*CoshIntegral[2*ArcTanh[a*x]] - 6*CoshIntegral[4*ArcTanh[a*x]] + CoshIn 
tegral[6*ArcTanh[a*x]] - 10*Log[ArcTanh[a*x]])/(32*a^7)
 
3.4.51.3 Rubi [A] (verified)

Time = 0.35 (sec) , antiderivative size = 47, normalized size of antiderivative = 0.85, number of steps used = 6, number of rules used = 5, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.227, Rules used = {6596, 3042, 25, 3793, 2009}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {x^6}{\left (1-a^2 x^2\right )^4 \text {arctanh}(a x)} \, dx\)

\(\Big \downarrow \) 6596

\(\displaystyle \frac {\int \frac {a^6 x^6}{\left (1-a^2 x^2\right )^3 \text {arctanh}(a x)}d\text {arctanh}(a x)}{a^7}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\int -\frac {\sin (i \text {arctanh}(a x))^6}{\text {arctanh}(a x)}d\text {arctanh}(a x)}{a^7}\)

\(\Big \downarrow \) 25

\(\displaystyle -\frac {\int \frac {\sin (i \text {arctanh}(a x))^6}{\text {arctanh}(a x)}d\text {arctanh}(a x)}{a^7}\)

\(\Big \downarrow \) 3793

\(\displaystyle -\frac {\int \left (-\frac {15 \cosh (2 \text {arctanh}(a x))}{32 \text {arctanh}(a x)}+\frac {3 \cosh (4 \text {arctanh}(a x))}{16 \text {arctanh}(a x)}-\frac {\cosh (6 \text {arctanh}(a x))}{32 \text {arctanh}(a x)}+\frac {5}{16 \text {arctanh}(a x)}\right )d\text {arctanh}(a x)}{a^7}\)

\(\Big \downarrow \) 2009

\(\displaystyle \frac {\frac {15}{32} \text {Chi}(2 \text {arctanh}(a x))-\frac {3}{16} \text {Chi}(4 \text {arctanh}(a x))+\frac {1}{32} \text {Chi}(6 \text {arctanh}(a x))-\frac {5}{16} \log (\text {arctanh}(a x))}{a^7}\)

input
Int[x^6/((1 - a^2*x^2)^4*ArcTanh[a*x]),x]
 
output
((15*CoshIntegral[2*ArcTanh[a*x]])/32 - (3*CoshIntegral[4*ArcTanh[a*x]])/1 
6 + CoshIntegral[6*ArcTanh[a*x]]/32 - (5*Log[ArcTanh[a*x]])/16)/a^7
 

3.4.51.3.1 Defintions of rubi rules used

rule 25
Int[-(Fx_), x_Symbol] :> Simp[Identity[-1]   Int[Fx, x], x]
 

rule 2009
Int[u_, x_Symbol] :> Simp[IntSum[u, x], x] /; SumQ[u]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 3793
Int[((c_.) + (d_.)*(x_))^(m_)*sin[(e_.) + (f_.)*(x_)]^(n_), x_Symbol] :> In 
t[ExpandTrigReduce[(c + d*x)^m, Sin[e + f*x]^n, x], x] /; FreeQ[{c, d, e, f 
, m}, x] && IGtQ[n, 1] && ( !RationalQ[m] || (GeQ[m, -1] && LtQ[m, 1]))
 

rule 6596
Int[((a_.) + ArcTanh[(c_.)*(x_)]*(b_.))^(p_.)*(x_)^(m_.)*((d_) + (e_.)*(x_) 
^2)^(q_), x_Symbol] :> Simp[d^q/c^(m + 1)   Subst[Int[(a + b*x)^p*(Sinh[x]^ 
m/Cosh[x]^(m + 2*(q + 1))), x], x, ArcTanh[c*x]], x] /; FreeQ[{a, b, c, d, 
e, p}, x] && EqQ[c^2*d + e, 0] && IGtQ[m, 0] && ILtQ[m + 2*q + 1, 0] && (In 
tegerQ[q] || GtQ[d, 0])
 
3.4.51.4 Maple [A] (verified)

Time = 0.30 (sec) , antiderivative size = 40, normalized size of antiderivative = 0.73

method result size
derivativedivides \(\frac {-\frac {5 \ln \left (\operatorname {arctanh}\left (a x \right )\right )}{16}+\frac {15 \,\operatorname {Chi}\left (2 \,\operatorname {arctanh}\left (a x \right )\right )}{32}-\frac {3 \,\operatorname {Chi}\left (4 \,\operatorname {arctanh}\left (a x \right )\right )}{16}+\frac {\operatorname {Chi}\left (6 \,\operatorname {arctanh}\left (a x \right )\right )}{32}}{a^{7}}\) \(40\)
default \(\frac {-\frac {5 \ln \left (\operatorname {arctanh}\left (a x \right )\right )}{16}+\frac {15 \,\operatorname {Chi}\left (2 \,\operatorname {arctanh}\left (a x \right )\right )}{32}-\frac {3 \,\operatorname {Chi}\left (4 \,\operatorname {arctanh}\left (a x \right )\right )}{16}+\frac {\operatorname {Chi}\left (6 \,\operatorname {arctanh}\left (a x \right )\right )}{32}}{a^{7}}\) \(40\)

input
int(x^6/(-a^2*x^2+1)^4/arctanh(a*x),x,method=_RETURNVERBOSE)
 
output
1/a^7*(-5/16*ln(arctanh(a*x))+15/32*Chi(2*arctanh(a*x))-3/16*Chi(4*arctanh 
(a*x))+1/32*Chi(6*arctanh(a*x)))
 
3.4.51.5 Fricas [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 220 vs. \(2 (47) = 94\).

Time = 0.24 (sec) , antiderivative size = 220, normalized size of antiderivative = 4.00 \[ \int \frac {x^6}{\left (1-a^2 x^2\right )^4 \text {arctanh}(a x)} \, dx=-\frac {20 \, \log \left (\log \left (-\frac {a x + 1}{a x - 1}\right )\right ) - \operatorname {log\_integral}\left (-\frac {a^{3} x^{3} + 3 \, a^{2} x^{2} + 3 \, a x + 1}{a^{3} x^{3} - 3 \, a^{2} x^{2} + 3 \, a x - 1}\right ) - \operatorname {log\_integral}\left (-\frac {a^{3} x^{3} - 3 \, a^{2} x^{2} + 3 \, a x - 1}{a^{3} x^{3} + 3 \, a^{2} x^{2} + 3 \, a x + 1}\right ) + 6 \, \operatorname {log\_integral}\left (\frac {a^{2} x^{2} + 2 \, a x + 1}{a^{2} x^{2} - 2 \, a x + 1}\right ) + 6 \, \operatorname {log\_integral}\left (\frac {a^{2} x^{2} - 2 \, a x + 1}{a^{2} x^{2} + 2 \, a x + 1}\right ) - 15 \, \operatorname {log\_integral}\left (-\frac {a x + 1}{a x - 1}\right ) - 15 \, \operatorname {log\_integral}\left (-\frac {a x - 1}{a x + 1}\right )}{64 \, a^{7}} \]

input
integrate(x^6/(-a^2*x^2+1)^4/arctanh(a*x),x, algorithm="fricas")
 
output
-1/64*(20*log(log(-(a*x + 1)/(a*x - 1))) - log_integral(-(a^3*x^3 + 3*a^2* 
x^2 + 3*a*x + 1)/(a^3*x^3 - 3*a^2*x^2 + 3*a*x - 1)) - log_integral(-(a^3*x 
^3 - 3*a^2*x^2 + 3*a*x - 1)/(a^3*x^3 + 3*a^2*x^2 + 3*a*x + 1)) + 6*log_int 
egral((a^2*x^2 + 2*a*x + 1)/(a^2*x^2 - 2*a*x + 1)) + 6*log_integral((a^2*x 
^2 - 2*a*x + 1)/(a^2*x^2 + 2*a*x + 1)) - 15*log_integral(-(a*x + 1)/(a*x - 
 1)) - 15*log_integral(-(a*x - 1)/(a*x + 1)))/a^7
 
3.4.51.6 Sympy [F]

\[ \int \frac {x^6}{\left (1-a^2 x^2\right )^4 \text {arctanh}(a x)} \, dx=\int \frac {x^{6}}{\left (a x - 1\right )^{4} \left (a x + 1\right )^{4} \operatorname {atanh}{\left (a x \right )}}\, dx \]

input
integrate(x**6/(-a**2*x**2+1)**4/atanh(a*x),x)
 
output
Integral(x**6/((a*x - 1)**4*(a*x + 1)**4*atanh(a*x)), x)
 
3.4.51.7 Maxima [F]

\[ \int \frac {x^6}{\left (1-a^2 x^2\right )^4 \text {arctanh}(a x)} \, dx=\int { \frac {x^{6}}{{\left (a^{2} x^{2} - 1\right )}^{4} \operatorname {artanh}\left (a x\right )} \,d x } \]

input
integrate(x^6/(-a^2*x^2+1)^4/arctanh(a*x),x, algorithm="maxima")
 
output
integrate(x^6/((a^2*x^2 - 1)^4*arctanh(a*x)), x)
 
3.4.51.8 Giac [F]

\[ \int \frac {x^6}{\left (1-a^2 x^2\right )^4 \text {arctanh}(a x)} \, dx=\int { \frac {x^{6}}{{\left (a^{2} x^{2} - 1\right )}^{4} \operatorname {artanh}\left (a x\right )} \,d x } \]

input
integrate(x^6/(-a^2*x^2+1)^4/arctanh(a*x),x, algorithm="giac")
 
output
integrate(x^6/((a^2*x^2 - 1)^4*arctanh(a*x)), x)
 
3.4.51.9 Mupad [F(-1)]

Timed out. \[ \int \frac {x^6}{\left (1-a^2 x^2\right )^4 \text {arctanh}(a x)} \, dx=\int \frac {x^6}{\mathrm {atanh}\left (a\,x\right )\,{\left (a^2\,x^2-1\right )}^4} \,d x \]

input
int(x^6/(atanh(a*x)*(a^2*x^2 - 1)^4),x)
 
output
int(x^6/(atanh(a*x)*(a^2*x^2 - 1)^4), x)